BMP9 (bone morphogenetic protein 9) induces NGF as an autocrine/paracrine cholinergic trophic factor in developing basal forebrain neurons.
نویسندگان
چکیده
Acetylcholine (ACh) synthesis and release from basal forebrain cholinergic neurons (BFCN) innervating the cerebral cortex and hippocampus are essential processes for normal learning, memory and attention. Bone morphogenetic protein (BMP) 9 is a cholinergic differentiation factor in the developing septum that increases ACh synthesis and choline acetyltransferase (Chat) gene expression both in vivo and in vitro. We investigated the possible induction of cholinergic trophic factors by BMP9 in murine septal cells. Nerve growth factor (NGF) protein expression and secretion into the medium was increased in cultured embryonic septal cells treated with BMP9, and partially mediated BMP9-induced acetylcholine production and Chat gene expression. BMP9-induced Ngf gene expression was detected in postmitotic cells, required new protein synthesis and was blocked by BMP type I receptor inhibition. Cholinergic neurons were isolated by fluorescence-activated cell sorting based on either transgenic expression of green fluorescent protein driven by the Chat promoter or NGF receptor (p75) immunostaining. Although both noncholinergic and cholinergic neurons in untreated cultures expressed similar low levels of Ngf, increased Ngf gene expression was restricted to Chat-positive neurons in BMP9-treated cultures. Likewise, similar levels of Ngf mRNA were detected in p75-negative and p75-positive septal cells, yet only p75-positive BFCN increased their Ngf gene expression when treated with BMP9, and only these cells expressed the Alk1 BMP receptor. The data suggest an autocrine/paracrine role for NGF in the development and/or maintenance of BFCN and imply that the stimulation of NGF production and release contributes to the cholinergic-supportive properties of BMP9.
منابع مشابه
BMP9 Protects Septal Neurons from Axotomy-Evoked Loss of Cholinergic Phenotype
BACKGROUND Cholinergic projection from the septum to the hippocampus is crucial for normal cognitive function and degeneration of cells and nerve fibers within the septohippocampal pathway contributes to the pathophysiology of Alzheimer's disease. Bone morphogenetic protein (BMP) 9 is a cholinergic differentiating factor during development both in vivo and in vitro. METHODOLOGY/PRINCIPAL FIND...
متن کاملBMP9 ameliorates amyloidosis and the cholinergic defect in a mouse model of Alzheimer's disease.
Bone morphogenetic protein 9 (BMP9) promotes the acquisition of the cholinergic phenotype in basal forebrain cholinergic neurons (BFCN) during development and protects these neurons from cholinergic dedifferentiation following axotomy when administered in vivo. A decline in BFCN function occurs in patients with Alzheimer's disease (AD) and contributes to the AD-associated memory deficits. We in...
متن کاملDexamethasone induces hypertrophy of developing medial septum cholinergic neurons: potential role of nerve growth factor.
Glucocorticoid hormones influence neuronal plasticity during development; however little is known about the mechanisms of this trophic activity. Because glucocorticoids increase nerve growth factor (NGF) synthesis in selected brain areas and NGF plays a role in the development of basal forebrain cholinergic neurons, we tested the hypothesis that glucocorticoids may foster maturation of the chol...
متن کاملEvidence for nerve growth factor-ganglioside interaction in forebrain cholinergic neurons.
Cholinergic neurons of the forebrain respond trophically to nerve growth factor (NGF) in some experimental circumstances. The cholinergic cell system of the nucleus basalis magnocellularis (NBM) which projects to the cortex shows signs of cellular degeneration following limited devascularizing cortical lesions, while no apparent damage is observed in the remaining ipsilateral cortex. These chol...
متن کاملRegulation of TrkA and ChAT expression in developing rat basal forebrain: evidence that both exogenous and endogenous NGF regulate differentiation of cholinergic neurons.
TrkA is a receptor tyrosine kinase whose activation transduces NGF signaling. TrkA expression has been demonstrated in NGF-responsive adult basal forebrain cholinergic neurons (BFCNs). Several lines of evidence have suggested that endogenous NGF plays a role in the development and differentiation of these neurons. We examined TrkA expression during development. TrkA mRNA and protein were presen...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- The Journal of neuroscience : the official journal of the Society for Neuroscience
دوره 30 24 شماره
صفحات -
تاریخ انتشار 2010